Статья ссылается на Уильям Бернштейн план, который он изложил для Business Insider , в котором говорится:
Put equal amounts of that 15% into just three different mutual funds:
• A U.S. total stock market index fund
• An international total stock market index fund
• A U.S. total bond market index fund
Over time, the three funds will grow at different rates, so once per year
you'll adjust their amounts so that they're again equal.
That's it.
Моделирование этой инвестиционной стратегии
Выберите три фонда из Google и запустите несколько номеров.
MUTF: VTSMX Vanguard Total Stock Market Index
MUTF: VGTSX Vanguard Total International Stock Index Fund Investor Shares
MUTF: VBMFX Vanguard Total Bond Market Index Fund Investor Shares
Международный фондовый индекс восходит только к 29 апреля 1996 года, поэтому был смоделирован пробег в 21 год. На основе 15% от зарплаты в 550 долларов в месяц с различными ежегодными повышениями:
annual salary total contributions final investment
rise (%) over 21 years value after 21 years
0 20,790 43,111
1 23,007 46,734
2 25,526 50,791
В широком смысле эта инвестиция удваивает стоимость взносов за два десятилетия.
Заметка: В моделирование не включены платежи за перебалансировку.
Ниже приведен код, используемый для проведения имитационного моделирования. Если у вас есть Mathematica , вы можете попробовать с разными фондами.
funds = {"VTSMX", "VGTSX", "VBMFX"};
(* Plotting the fund indices *)
{tsm, ism, tbm} = FinancialData[#, {"April 29, 1996",
DateList[], "Month"}] & /@ funds; DateListPlot[
Transpose[{First /@ #, 100 Last /@ #/#[[1, 2]]}] & /@
{tsm, ism, tbm}, PlotLegends -> funds, PlotLabel ->
"Indices from month-end April 1996 rebased to 100"]
(* Plotting the investment contributions *)
salary = 550;
investment = salary*0.15;
inflation = 2;
nmonths = Length[tsm] - 1;
ny = Quotient[nmonths, 12];
iy = Array[investment/3 (1 + inflation/100)^(# - 1) &, ny];
d = Take[Flatten[ConstantArray[#, 12] & /@ iy], 12 ny];
DateListPlot[Transpose[{Take[First /@ tsm, 12 ny], 3 d}],
PlotLabel -> Row[{"Monthly contributions with ",
inflation, "% inflation - Total = ",
Total[3 d]}], PlotRange -> {Automatic, {0, Automatic}},
PlotMarkers -> {Automatic, 6}, FrameLabel -> {"Time",
Rotate[Style["$", 12], Pi/2]}, ImageSize -> 380]
Заметьте выше, как индекс облигаций (VBMFX) сохраняет значение во время падения 2008 года. Это иллюстрирует обоснованность диверсификации по различным типам фондов.
(* Calculating & plotting the investment values *)
{tsm2, ism2, tbm2} = Take[Ratios@# - 1, 12 ny] & /@
Map[Last, {tsm, ism, tbm}, {2}];
d2 = 0;
ds = {};
eachyear[yr_] := Last /@ Function[series,
AppendTo[ds, Total@Array[(d[[# + 12 (yr - 1)]] +
If[# == 1, d2/3, 0]) Apply[Times,
1 + series[[# + 12 (yr - 1) ;; 12 yr]]] &,
12]]] /@ {tsm2, ism2, tbm2}
vals = Array[(d2 = Total@eachyear[#]) &, ny];
rd = Last /@ Partition[Take[First /@ tsm, {2, 12 ny + 1}], 12];
DateListPlot[Transpose[MapThread[
{{#1, #2[[1]]}, {#1, #2[[2]]}, {#1, #2[[3]]}} &,
{rd, Partition[ds, 3]}]],
PlotMarkers -> {Automatic, 8}, PlotLabel -> Row[{
"Individual fund investment values over ", ny,
" years"}], PlotLegends -> funds, Epilog -> {Red,
Arrowheads[0.06], Arrow[{{{2007, 10, 1}, 12000},
{{2008, 10, 1}, 9000}}]}, FrameLabel -> {"Time",
Rotate[Style["$", 12], Pi/2]}, ImageSize -> 400]